# Comparison of Carbon Footprint of Spray Polyurethane Foam Building Enclosures with Non-Foam Alternatives

**MARY BOGDAN** 

Honeywell International 20 Peabody Street Buffalo NY 14210 USA **ROCKFORD BOYER** 

Elastochem 37 Easton Rd Brantford, ON N3P 1J4

#### ABSTRACT

Sustainability has become a core focus in architectural design, driving the construction industry toward more environmentally responsible building practices. As architects seek to minimize the carbon footprint of their projects, understanding material choices is crucial. Three key green building standards—LEED, Passive House, and the Living Building Challenge—offer strategies to reduce environmental impact through comprehensive performance and operational approaches.

With development by the academic community of a simulation with the partnership of SPF system houses there is the ability to detail the total carbon footprint of a building assembly. A series pre-designed of spray foam wall enclosures have been evaluated. The evaluation includes detailing the total carbon footprint of the enclosure, including options for various cladding types, structural systems, and thermal insulation, giving architects an invaluable tool to make informed, sustainable design decisions.

This presentation will highlight how carbon footprint stacks up against traditional insulation options and how its raw materials contribute to its status as a low-carbon solution. Additionally, key terms such as carbon footprint, embodied carbon, LCAs, and EPDs will be clearly explained to ensure the reader leaves with a solid understanding of these critical concepts.

### **DISCLAIMER**

Although Honeywell International Inc. and Elastochem believe that the information contained herein is accurate and reliable, it is presented without guarantee or responsibility of any kind and does not constitute any representation or warranty of Honeywell International Inc., either expressed or implied. Several factors may affect the performance of any products used in conjunction with user's materials, such as other raw materials, application, formulation, environmental factors, and manufacturing conditions among others, all of which must be taken into account by the user in producing or using the products. The user should not assume that all necessary data for the proper evaluation of these products are contained herein. Information provided herein does not relieve the user from responsibility of carrying out its own tests and experiments, and the user assumes all risks and liabilities (including, but not limited to, risks relating to results, patent infringement, regulatory compliance and health, safety, and environment) related to the use of the products and/or information contained herein.

#### INTRODUCTION

The construction industry is responsible for roughly 40% of the worldwide carbon emissions. This is larger than any other segment. (Figure 1).

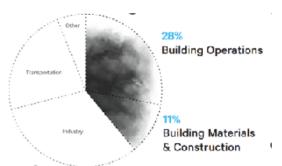



Figure 1. Worldwide Carbon Emissions<sup>1</sup>

When one looks at the carbon impact of a building there are two sources of carbon emissions from a building (Figure 1), one associated with building operation which is estimated to be  $\sim$ 28% of the emissions and the other, embodied carbon, which is associated with the manufacture of the building materials used in the structure which is estimated to be  $\sim$ 11%. The construction and design community have done extensive work on making the buildings more energy efficient, and in the process, reduced the building's operational carbon. So, the focus on the embodied carbon associated with the manufacture of the building products has become more visible to the design and regulatory community.

Embodied carbon can easily be defined as the GHG emissions before a building is ever commissioned or built. It includes items such as emissions from the energy used to extract raw materials (mining, logging, refining), the energy associated with the manufacture of building products (such as kilns, furnaces, laminators, foam reactors), transporting materials to the job site, installations and eventually disposal or recycling at the end of life. Figure 2



Figure 2. Sources of Embodied Carbon in Building Materials

With the ever-changing regulatory landscape, the focus on carbon emissions has varied. Figure 3 shows the world's carbon emissions by country.

\_

<sup>&</sup>lt;sup>1</sup> Global ABC- Global Status Report 2018

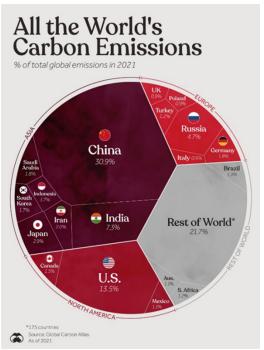



Figure 2. World's Carbon Emissions by Country<sup>2</sup>

Canada represents only 1.5% of the carbon emissions but it has made significant regulatory efforts to reduce all the carbon emissions associated with buildings. The Canadian Board for Harmonized Construction Codes (CBHCC) has approved changes on an objective to address greenhouse gas (GHG) emissions and technical requirements for operations GHG emissions for the 2025 editions of the National Energy Code of Canada for Building (NECB) and the National Building Code of Canada<sup>3</sup>. This focuses on reducing building energy requirements (i.e. the operational carbon footprint). In addition, the CBHCC's work plan for the 2030 code cycle includes the development of technical requirements to minimize excessive embodied GHG emissions. The CBHCC's federal, provincial, and territorial Working Group on Climate Change Mitigation was struck to draft policy direction to inform the planned technical work for the 2030 Codes. These efforts will focus on new homes and commercial buildings.

Although the regulatory driver is important in any situation the bigger influence is the adoption of using total carbon (embodied + operation) in the absence of regulations by the building design community. The 2030 Architectural Challenge is a global effort to evaluate embodied carbon in building assemblies. This effort is fully engaged in Canada. To support this effort the industry formed an advisory panel of Building science firms, Universities, Government agencies, Architects, Manufacturers to develop a catalog of various building materials and wall assembly design for architects to use as reference when considering embodied carbon. The initial work was entitled "New Design Resources for Embodied Carbon Targets" and published by RDH Building Science<sup>4</sup>. "In this guide, we have quantified the embodied carbon intensity of commonly used enclosure systems in the Greater Toronto and Hamilton Area (GTHA) used in office, multi-unit residential and institutional buildings (Ontario Building Code (OBC) Part 3 buildings). Using a standardized life cycle assessment methodology for calculating CO<sub>2</sub> equivalent emissions, embodied carbon metrics were established for 26 different enclosure assemblies." <sup>4</sup>

<sup>&</sup>lt;sup>2</sup> Global Carbon Atlas as of 2021

<sup>&</sup>lt;sup>3</sup> https://cbhcc-cchcc.ca/en/phase-1-embodied-ghg-draft-policy-positions/

<sup>&</sup>lt;sup>4</sup> RDH-TMU Embodied Carbon Resource Guide and Udisi et al. Embodied Carbon Impacts of Building Envelope Systems, World Sustainable Built Environment (2024).

The transition from HFC to Honeywell's Solstice HFO blowing agents has dramatically reduced the embodied carbon of polyurethane foam. This reduction is highlighted in the product LCA and EPD published by the manufacturers. It is also discussed in a paper published by Honeywell in 2012.<sup>5</sup> This makes the use of Solstice LBA based spray foam an ideal insulation for building assemblies, especially when embodied carbon is a consideration.

## Lifecycle Analysis (LCA) VS Environmental Product Declaration (EPD)

Data for this analysis comes from a variety of sources. Often today the terms LCA (Life Cycle Assessment) and EPD (Environmental Product Declaration) are used interchangeably by the casual observer. Both sources are used in this analysis, and it is important to understand the difference. Table 1 below compares the documents and cites their similarities and differences.

Table 1: Comparison of LCA and EPD

| Table 1. Com | parison of LCA and Erd                                                                                                                                                        |                                                                                                                                                                                                    |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Document:    | LCA                                                                                                                                                                           | EPD                                                                                                                                                                                                |
| Document.    | Life Cycle Assessment                                                                                                                                                         | Environmental Product Declaration                                                                                                                                                                  |
| What is it:  | A scientific methodology for assessing the environmental impacts of a product, process or service throughout its entire life cycle (from raw material extraction to disposal) | A standardized 3 <sup>rd</sup> party verified report that provides transparent and comparable information about the environmental impact of a product throughout its life cycle.  Created from LCA |
| Purpose:     | To understand and quantify environmental impacts (e.g. carbon footprint, water use, energy use, pollution)                                                                    | To communicate environmental performance transparently and credibly to external stakeholders (e.g. customers, regulators, building rating systems like LEED)                                       |
| Scope:       | Flexible, can be comparative, exploratory, or support internal decision-making                                                                                                | Follow a specific Product Category Rule (PCR) to ensure comparability between similar products                                                                                                     |
| Audience:    | Internal stakeholders, researchers, policy makers                                                                                                                             | External- architects, engineers, sustainability professionals, procurement officers                                                                                                                |
| Standards:   | ISO 14040<br>ISO 4444                                                                                                                                                         | ISO 14025 (Type II Environmental Declarations)<br>EN 158-4 (for construction)                                                                                                                      |

Although both follow ISO standards, the EPD follows a product category rule which makes the data used in the EPD more consistent in units and sources. Therefore, in this analysis the EPD data was more heavily relied upon. Since this work relies on a simulation it is also important to be specific on what components of a product life cycle are included and what is not in this comparison. The graphic in Figure 3 below indicates the areas included in embodied and operational carbon in this analysis.

<sup>5</sup> CPI Conference 2012 "Life Cycle Analysis of Spray Foam Prepared with Solstice® Liquid Blowing Agent" by

Mary Bogdan, Xuaco Pascual

Supplementary Information beyond the building life cycle B1-7 C1-4 A1-3 A4-5 END OF LIFE Benefits and loads PRODUCT CONSTRUCTION USE stage Whole life carbon\* stage beyond the building life cycle Α2 meterial supply Terms used in this report and Operational water use defined in the glossary below

Figure 3 Building life cycle stages contributing to upfront (embodied) and operational carbon emissions<sup>6</sup>

#### **ASSUMPTIONS**

To have a building that is energy efficient and optimized for low embodied carbon there is a balance to be made. To do this effectively one needs to look at all options considering both the LCA and EPD of the materials and the structure. It is important to note that the generation of this information is being continually upgraded. Many documents are created for generic industry product vs manufacturer specific products. There is currently a transition to the product and manufacturer specific LCA's and EPDs from a generic product one.

In the analysis conducted by RDH<sup>7</sup> there were several assumptions made and conditions set. They are described in the following paragraphs.

"The embodied carbon emissions analysis was carried out by calculating the volume or mass of material in each layer of the assembly and then using emissions data from appropriate Environmental Product Declarations (EPDs). The calculations were made for a functional unit of 9 m² of enclosure assembly. This was to account for all assembly components that might be missing in a smaller area, such as studs, insulations pins, and anchorage systems. However, the data is reported both for 9m² and normalized for 1m² carbon intensity (kg CO2e/m²) to simplify early design stage calculations from enclosure area take-offs. The LCA calculations assumed a building life span of 60 years. If components had a shorter lifespan, the emissions associated with replacement were included.

The outputs for each enclosure include calculations for embodied carbon (kgCO2e/m²) for each layer of the system. Life cycle stages A1 to A3 are highlighted, indicating the layers with most impact. Life stages A4 and A5 are also included although these are a small proportion of the total. It should be noted that A5 emissions are attracting considerable attention at present but mostly these are attributed to general site activities and not to individual components or materials. To give some indication of total environmental impact including stages A, B and C, these are also reported based on various TRACI environmental impact categories but with less confidence of their accuracy. Biogenic carbon, which refers to carbon that is taken out of the atmosphere and stored in biological materials such as trees or plants through the process of photosynthesis, is also reported where appropriate. Materials that originate

<sup>&</sup>lt;sup>6</sup> RDH Building Science | Embodied Carbon- Elastochem and Honeywell | July 31, 2025, Page 2

<sup>&</sup>lt;sup>7</sup> RDH-TMU Embodied Carbon Resource Guide and Udisi et al. Embodied Carbon Impacts of Building Envelope Systems, World Sustainable Built Environment (2024).page 6-8

from biological sources may sequester carbon while in use as part of the enclosure system. In this respect biogenic carbon stored in timber and other plant-based materials can be viewed as a negative emission. Timber used in construction is considered to lock in the biogenic carbon for the lifetime of the building. When a component using such materials reaches the end of its life it is assumed to be incinerated with the stored carbon released back into the atmosphere."8

In Figure 4 below you can see that the A1 to A4 are graphically represented. The data for A4 and A5 are estimated from One Click database. As data generation increases for the building components the accuracy and regional focus of this data will increase and become more accurate.

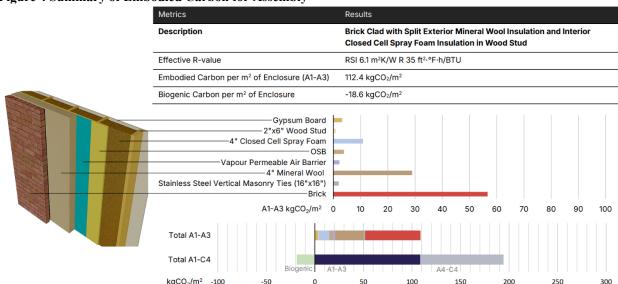



Figure 4 Summary of Embodied Carbon for Assembly

## **Analysis of Building Assemblies:**

The use of this simulation allows the designer to compare two different assemblies or build an assembly with the focus on minimizing embodied carbon. This paper discusses the comparison of a commercial wall assembly one insulated with mineral wool and the other with Solstice LBA spray foam. These assemblies were prepared for the Toronto Ontario market. The paper also presents information on a brick and aluminum panel based commercial assembly that includes multiple types of insulation. These assemblies are for the US market. An option that may be found in high rise structures.

## Comparison of Retrofit Assemblies in Toronto

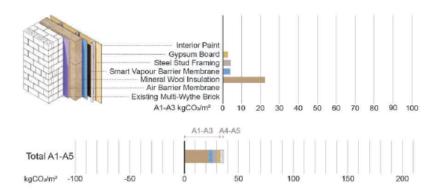

Initially let's begin by comparing the same commercial assembly that utilizes two different insulations. This is an exterior masonry wall assembly. It is a retrofit application. These assemblies were modeled to meet the Toronto Green Standard. The baseline targets effective R-value the roof wall, exposed floor and vision glazing. The thermal performance target was set at R-25 for walls, R-30 for roofs and R-25 for floors. <sup>9</sup> It is important before we compare the assemblies that the details of each assembly are considered separately. The first assembly we are considering is Assembly 14 from the RDH report<sup>9</sup>. It represents an existing masonry with interior mineral wool insulation assembly. A summary of the values for the assembly are represented in Figure 5 below.

Figure 5 Summary of Values for Existing Masonry with Interior Mineral Wool Insulation Assembly<sup>9</sup>.

<sup>&</sup>lt;sup>8</sup> 2025 "Embodied Carbon Honeywell Enclosures" by RDH Building Science page 3

<sup>&</sup>lt;sup>9</sup> 2025 "Embodied Carbon Honeywell Enclosures" by RDH Building Science page 45-46

| Summary for W14                             |                                                        |
|---------------------------------------------|--------------------------------------------------------|
| Description                                 | Existing Masonry with Interior Mineral Wool Insulation |
| R-Value                                     | Rsi 4.2 m <sup>2</sup> K/W R 24.0 ft2-°F-h/BTU         |
| Embodied Carbon per m² of Enclosure (A1-A3) | 33.7 KgCO <sub>2</sub> /m <sup>2</sup>                 |
| Biogenic Carbon per m² of Enclosure         | 0 KgCO <sub>2</sub> /m <sup>2</sup>                    |



The mineral wool contributes the most to the assembly embodied carbon of all the components

Table 2 R- Value Calculations for Existing Masonry with Interior Mineral Wool Insulation Assembly. 9 W14 R-Value Calculations:

| Annually Description                                                  | t <sub>ss</sub> | t,   | k       | C (USI)              | RSI Effective | R-effective    | R-nominal      |
|-----------------------------------------------------------------------|-----------------|------|---------|----------------------|---------------|----------------|----------------|
| Assembly Description                                                  | [mm]            | [in] | [W/=mK] | [W/m <sup>2</sup> K] | [m²K/W]       | (ft²-°F-h/BTU) | (ft².ºF·h/BTU) |
| Interior Air Film                                                     |                 |      |         |                      | 0.12          | 0.68           |                |
| Interior Gypsum Board                                                 | 12.7            | 0.5  |         | 1.5                  | 0.05          | 0.3            |                |
| Steel Stud-Framed Wall                                                | 63.50           | 2.5  | 0.49    | 7.75                 | 0.13          | 0.73           |                |
| Smart Vapour Retarder                                                 |                 | 120  |         | 100                  |               |                |                |
| Rigid or Semi-Rigid<br>Mineral Fiber Board<br>Insulation (Continuous) | 127             | 5    |         | -                    | 3.75          | 21.29          | 21.5           |
| Fluid-Applied Air Barrier<br>and WRB Membrane<br>(Vapour Membrane)    | -               | w    | -       | -                    | -             | -              |                |
| Existing Multi-Wythe<br>Brick Masonry                                 | 203.2           | 8    | 1.31    | 6.45                 | 0.16          | 0.88           |                |
| Exterior Air Film                                                     |                 |      |         |                      | 0.03          | 0.17           |                |
| Total                                                                 | 406.4           | 16   |         |                      | 4.2           | 24             | 21.5           |

The major contributor to R-value in the assembly is mineral wool.

Table 3 Embodied Carbon Emissions (A1-A3 Life Stages) for 9m<sup>2</sup> for Existing Masonry with Interior Mineral Wool Insulation Assembly. <sup>10</sup>

| Category               | Material (RDH<br>Specification)          | Description<br>(from EPD)                                                                                                                                                                                 | Thickness<br>[mm] | Volume of<br>Material<br>(m²) | Carbon<br>Emissions<br>(A1-A3)<br>(KgCO <sub>2</sub> E) | % of Total |
|------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------|---------------------------------------------------------|------------|
| Finish                 | Interior Paint                           | Eggshell acrylic paint, 1294.29 kg/m³ (Generic)                                                                                                                                                           | 0.16<br>(0.0063°) | 0.0014                        | 0.56                                                    | 0.20%      |
| Finish                 | Gypsum board                             | Gypsum plaster board, regular, generic, 6.5-25 mm, 10.725 kg/m², (for 12.5 mm), 858 kg/m³                                                                                                                 | 12.7 (0.5")       | 0.1143                        | 26                                                      | 8,60%      |
| Back-Up<br>Structure   | Steel stud framing,<br>no insulation     | Steel stud framing for drywall/gypsum<br>plasterboard per sq. meter of wall area (incl.<br>air gape per m³), C-profile: 63.5 x 30.48 mm,<br>gauge 25, 3 m height x 408.4 mm (400 mm)<br>spacing (Generic) | E)                | •                             | 39                                                      | 12.80%     |
| Exterior<br>Membrane   | Smart vapour barrier<br>membrane         | Vapor barrier (Generic)                                                                                                                                                                                   |                   |                               | 33                                                      | 10.90%     |
| Insulation<br>External | Mineral wool insulation board            | Heavy density mineral wool board, 1 m <sup>2</sup> K/W,<br>34 mm (1.34 in), 4.2 kg/m <sup>2</sup> (0.86 lb/ft2), 123.52<br>kg/m3 (7.71 lb/ft3),<br>Industry average US (NAIMA)                            | 127 (5")          | 1.143                         | 200                                                     | 66.0%      |
| Air Barrier            | Liquid applied air barri-<br>er membrane | Air and water barrier system, fluid applied, 0.9<br>kg/m² (0.184 lbs/ ft2), Tyvek (DuPont)<br>(Product specific)                                                                                          |                   | 340                           | 5.1                                                     | 1.70%      |
| Existing<br>Structure  | Existing Multi-Wythe<br>Brick            | Existing- Not included in calculations                                                                                                                                                                    |                   |                               |                                                         |            |
|                        | Total                                    |                                                                                                                                                                                                           |                   |                               | 303.7                                                   | 100.20%    |

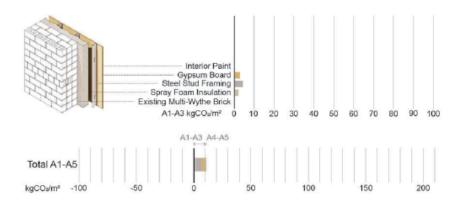
\*Software calculates the impact based on the area provided

Since this is a retrofit assembly, the brick does not contribute to the A1-A3 embodied carbon. If this was new construction the contribution for the brick would be significant. Based upon the data for the building materials the internal insulation- mineral wool, represents 66% of the embodied carbon. The final table for the assembly Table 4 is a summary of the environmental emissions (A1 to C4 life stages) for 9m<sup>2</sup>.

Table 4 Environmental Emissions (A1-A3 Life Stages) for 9m<sup>2</sup> for Existing Masonry with Interior Mineral Wool Insulation Assembly.<sup>11</sup>

|                                        |                             | A1 to C4 | A1-A3                     | A4-A5                                       | B1-B5                                      | C1-C4          | A1-A3               |
|----------------------------------------|-----------------------------|----------|---------------------------|---------------------------------------------|--------------------------------------------|----------------|---------------------|
| Result Category                        | Units                       | Total    | Construction<br>Materials | Transportation to<br>Site &<br>Construction | Material<br>Replacement &<br>Refurbishment | Deconstruction | A1-A3 % of<br>Total |
| Global Warming                         | kg CO <sub>2</sub> e        | 805.356  | 304.58                    | 3.288                                       | 94.81                                      | 402.678        | 37.82%              |
| Ozone Depletion                        | kg CFC11e                   | 7.61E-06 | 1.31E-06                  | 8.67E-07                                    | 1.63E-06                                   | 3.81E-06       | 17.21%              |
| Acidification                          | kg SO <sub>2</sub> e        | 1.68252  | 0.6532                    | 0.01806                                     | 0.17                                       | 0.84126        | 38.82%              |
| Eutrophication                         | kg Ne                       | 0.219704 | 0.095394                  | 0.002558                                    | 0.0119                                     | 0.109852       | 43.42%              |
| Formation of<br>Tropospheric<br>Ozone  | kg O3e                      | 30.102   | 10.299                    | 0.502                                       | 4.25                                       | 15.061         | 34.21%              |
| Depletion of<br>Nonrenewable<br>Energy | МЈ                          | 8004.48  | 1725.22                   | 92.85                                       | 2184.17                                    | 4002.24        | 21,55%              |
| Biogenic Carbon<br>Storage             | kg CO <sub>2</sub> e<br>bio | o        | 0                         |                                             |                                            |                |                     |

Although significant the GWP impact is not the largest of the categories. The eutrophication is the largest. Eutrophication is the process in which a water body becomes overly enriched with nutrients, leading to the plentiful growth of simple plant life.


The second assembly we are considering is Assembly 15 from the RDH report<sup>12</sup>. It represents an existing masonry with interior HFO spray foam insulation assembly. A summary of the values for the assembly are represented in Figure 6 below.

<sup>&</sup>lt;sup>10</sup> 2025 "Embodied Carbon Honeywell Enclosures" by RDH Building Science page 45

<sup>&</sup>lt;sup>11</sup> 2025 "Embodied Carbon Honeywell Enclosures" by RDH Building Science page 45

Figure 6 Summary of Values for Existing Masonry with Interior HFO Spray Foam Insulation Assembly 12.

| Summary for W15                                         |                                                      |
|---------------------------------------------------------|------------------------------------------------------|
| Description                                             | Existing Masonry with Interior Spray Foam Insulation |
| R-Value                                                 | Rsi 4.7 m²K/W R 26.8 ft2·°F·h/BTU                    |
| Embodied Carbon per m <sup>2</sup> of Enclosure (A1-A3) | 9.8 KgCO <sub>2</sub> /m <sup>2</sup>                |
| Biogenic Carbon per m² of Enclosure                     | 0 KgCO <sub>2</sub> /m <sup>2</sup>                  |



The impact of the embodied carbon for this assembly is minimal.

Table 5 R- Value Calculations for Existing Masonry with Interior HFO Spray Foam Insulation Assembly.<sup>13</sup>

| Assembly Description                  | t <sub>st</sub><br>[mm] | t <sub>ir</sub><br>(in) | k<br>[W/=mK] | C (USI)<br>[W/m <sup>2</sup> K] | RSI Effective<br>[m²K/W] | R-effective<br>(ft²-°F·h/BTU) | R-nominal<br>(ft².°F-h/BTU) |
|---------------------------------------|-------------------------|-------------------------|--------------|---------------------------------|--------------------------|-------------------------------|-----------------------------|
| Interior Air Film                     |                         |                         |              |                                 | 0.12                     | 0.68                          |                             |
| Interior Gypsum Board                 | 12.7                    | 0.5                     | 0.16         | 27.04                           | 0.04                     | 0.21                          |                             |
| Steel Stud-Framed Wall                | 63.5                    | 2.5                     | 0.49         | 7.75                            | 0.13                     | 0.73                          |                             |
| Closed-Cell Spray Foam<br>Insulation  | 101.6                   | 4                       | -            | 14                              | 4.26                     | 24.16                         | 24.16                       |
| Existing Multi-Wythe<br>Brick Masonry | 203.2                   | 8                       | 1.31         | 6.45                            | 0.16                     | 0.88                          |                             |
| Exterior Air Film                     |                         |                         |              |                                 | 0.03                     | 0.17                          |                             |
| Total                                 | 381                     | 15                      |              |                                 | 4.7                      | 26.8                          | 24.2                        |

The major contributor to R-value in the assembly is HFO closed cell spray foam.

<sup>&</sup>lt;sup>12</sup> 2025 "Embodied Carbon Honeywell Enclosures" by RDH Building Science page 46

<sup>&</sup>lt;sup>13</sup> 2025 "Embodied Carbon Honeywell Enclosures" by RDH Building Science page 45-46

Table 6 Embodied Carbon Emissions (A1-A3 Life Stages) for 9m<sup>2</sup> for Existing Masonry with Interior Mineral Wool Insulation Assembly. 14

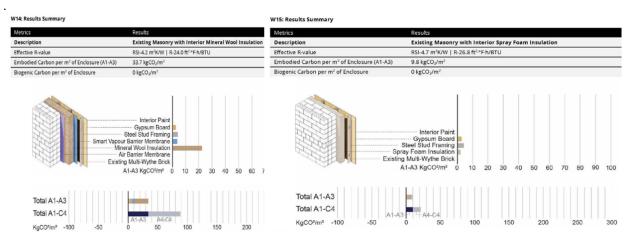
| Category Material (RDH<br>Specification) |                                      | Description<br>(from EPD)                                                                                                                                                                     | Thickness<br>[mm] | Volume of<br>Material<br>(m²) | Carbon<br>Emissions<br>(A1-A3)<br>(KgCO <sub>2</sub> E) | % of Tota |
|------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------|---------------------------------------------------------|-----------|
| Finish                                   | Interior Paint                       | Eggshell acrylic paint, 1294.29 kg/m³ (Generic)                                                                                                                                               | 0.16<br>(0.0063°) | 0.0014                        | 0.56                                                    | 0.6%      |
| Finish                                   | Gypsum board                         | Gypsum plaster board, regular (Generic)                                                                                                                                                       | 12.7 (0.5")       | 0.1143                        | 26                                                      | 29.30%    |
| Back-Up<br>Structure                     | Steel stud framing,<br>no insulation | Steel stud framing for drywall/gypsum plasterboard per sq. meter of wall area (incl. air gaps per m³), C-profile: 63.5 x 30.48 mm, gauge 25, 3 m height x 406.4 mm (400 mm) spacing (Generic) | a)                |                               | 39                                                      | 43.70%    |
| Exterior<br>Insulation                   | Spray Foam                           | Spray polyurethane foam insulation for closed cell, with HFO blowing agent                                                                                                                    | 101.6 (4")        | 0.9144                        | 23                                                      | 26.40%    |
| Existing<br>Structure                    | Existing multi-wythe<br>brick        | Existing- Not Included                                                                                                                                                                        |                   |                               | 100                                                     |           |
|                                          | Total                                |                                                                                                                                                                                               |                   |                               | 88.56                                                   |           |

\*Software calculates the impact based on the area provided

Since this is a retrofit the brick does not contribute to the A1-A3 embodied carbon for the assembly. If this was new construction the contribution for the brick would be massive. Based upon the data for the building materials the internal insulation- spray foam only represents 26% of the embodied carbon. The final table for the assembly Table 7 is a summary of the environmental emissions (A1 to C4 life stages) for 9m<sup>2</sup>.

Table 7 Environmental Emissions (A1-A3 Life Stages) for 9m<sup>2</sup> for Existing Masonry with Interior HFO Spray Foam Insulation Assembly. <sup>15</sup>

|                                        |                             | A1 to C4 | A1-A3                     | A4-A5                                       | B1-B5                                      | C1-C4          | A1-A3               |
|----------------------------------------|-----------------------------|----------|---------------------------|---------------------------------------------|--------------------------------------------|----------------|---------------------|
| Result Category                        | Units                       | Total    | Construction<br>Materials | Transportation to<br>Site &<br>Construction | Material<br>Replacement &<br>Refurbishment | Deconstruction | A1-A3 % of<br>Total |
| Global Warming                         | kg CO <sub>2</sub> e        | 189.12   | 89.01                     | 1.72                                        | 3.83                                       | 94.56          | 47.07%              |
| Ozone Depletion                        | kg CFC11e                   | 4.59E-06 | 1.58E-06                  | 4.55E-07                                    | 2.60E-07                                   | 2.30E-06       | 34.42%              |
| Acidification                          | kg SO <sub>2</sub> e        | 0.9018   | 0.4202                    | 9.70E-03                                    | 0.021                                      | 0.4509         | 46.60%              |
| Eutrophication                         | kg Ne                       | 0.194588 | 0.094944                  | 0.00135                                     | 0.001                                      | 0.097294       | 48.79%              |
| Formation of<br>Tropospheric<br>Ozone  | kg O3e                      | 13.624   | 6.049                     | 0.273                                       | 0.49                                       | 6.812          | 44.40%              |
| Depletion of<br>Nonrenewable<br>Energy | МЈ                          | 1541.3   | 689.85                    | 48.66                                       | 32.14                                      | 770.65         | 44.76%              |
| Biogenic Carbon<br>Storage             | kg CO <sub>2</sub> e<br>bio | 0        | 0                         |                                             |                                            |                |                     |


With the embodied carbon being minimal all the contributions are similar.

<sup>&</sup>lt;sup>14</sup> 2025 "Embodied Carbon Honeywell Enclosures" by RDH Building Science page 46

<sup>&</sup>lt;sup>15</sup> 2025 "Embodied Carbon Honeywell Enclosures" by RDH Building Science page 45-46

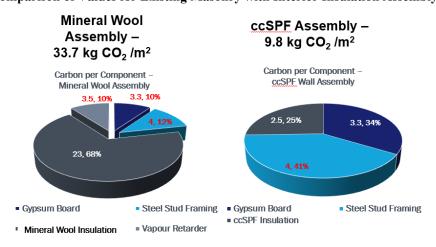

Since we have now considered each assembly Figure 7 compares the two assemblies.

Figure 7: Summary of Values for Existing Masonry with Interior Insulation Assembly 16.



It is apparent from comparing the assemblies that the Embodied carbons for the mineral wool assembly is much higher than the one for the HFO spray foam assembly. The insulation values contribute significantly to the difference. However, the mineral wool assemblies also require more components to meet code. This contributes to the embodied carbon. Figure 8 highlights the differences between assemblies.

Figure 8: Comparison of Values for Existing Masonry with Interior Insulation Assembly 17.



ccSPF Assembly: Less Materials 71% Reduction in Embodied Carbon

There is a 71% reduction in embodied carbon when comparing the spray foam assembly with the mineral wool assembly. The biggest impact is the embodied energy of mineral wool. Also, the fact that the mineral wool assembly requires additional materials to meet code adds to the embodied carbon.

<sup>&</sup>lt;sup>16</sup> 2025 "Embodied Carbon Honeywell Enclosures" by RDH Building Science page 45-46

<sup>&</sup>lt;sup>17</sup> 2025 "Embodied Carbon Honeywell Enclosures" by RDH Building Science page 46

#### Comparison of New Assemblies in Boston

We have compared retrofit applications and found significantly lower embodied carbon in the spray foam assembly. However often in an assembly, multiple insulation types are often used. In this analysis we evaluate a new brick clad assembly which uses both mineral wool and HFO spray foam as insulation. Thes assembly was modeled to meet the Boston building code. The baseline targets effective R-value the roof wall, exposed floor and vision glazing. The thermal performance target was set at R-35 for walls. <sup>18</sup> It is important before we compare the assemblies that the details of each assembly are considered separately. The first assembly we are considering is Assembly UR2 from the RDH report<sup>15</sup>. It represents a new masonry assembly with exterior mineral wool insulation and interior HFO spray foam insulation. A summary of the values for the assembly are represented in Figure 8 below.

Figure 8: Summary of Values for Brick Clad with Split Exterior Mineral Wool Insulation and Interior Closed Cell Spray Foam Insulation in Wood Stud<sup>19</sup>

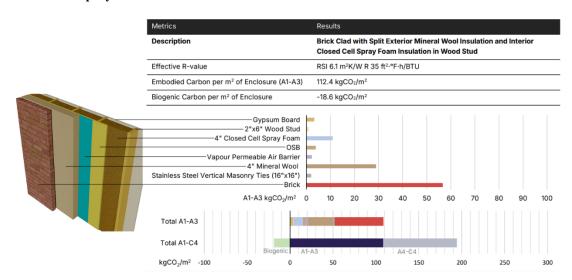



Table 8 R- Value Calculations for Brick Clad with Split Exterior Mineral Wool Insulation and Interior Closed Cell Spray Foam Insulation in Wood Stud. <sup>20</sup>

| Description                                              | tsı    | te    | k     | C (USI)            | RSIeffective | Reflective   | Roominal     |
|----------------------------------------------------------|--------|-------|-------|--------------------|--------------|--------------|--------------|
| Units                                                    | mm     | in    | W/mK  | W/m <sup>2</sup> K | m²K/W        | ft².ºF-h/BTU | ft².ºF-h/BTU |
| Interior Film                                            | -      | -     | -     | 8.30               | 0.12         | 0.68         | 0.68         |
| Interior Gypsum Board                                    | 12.70  | 0.50  | -     | -                  | -            | -            | -            |
| 2"x6" Wood Stud with 4" ccSPF                            | 139.70 | 5.50  | -     | -                  | 3.13         | 17.80        | 24.00        |
| OSB                                                      | 12.70  | 0.50  | 0.16  | 8.30               | 0.12         | 0.68         | 0.68         |
| Vapour Permeable Air Barrier                             | -      | -     | -     | -                  | -            | -            | -            |
| 4" Rockwool with Std. SS Vert.<br>Masonry Ties (16"x16") | 101.60 | 4.00  | 0.034 | 0.33               | 2.71         | 15.39        | 16.97        |
| Ventilated Air Space                                     | 25.40  | 1.00  | -     | -                  | -            | -            | -            |
| Brick                                                    | -      | -     | -     | -                  | -            | -            | -            |
| Exterior Film                                            | -      | -     | -     | 34                 | 0.03         | 0.17         | 0.17         |
| TOTALS                                                   | 292.10 | 11.50 | -     | -                  | 6.12         | 34.72        | 42.50        |

The major contributor to R-value in the assembly is HFO closed cell spray foam.

<sup>&</sup>lt;sup>18</sup> Embodied Carbon Honeywell Enclosures, RDH Building Science, pg 17

<sup>&</sup>lt;sup>19</sup> 2025 "Embodied Carbon Honeywell Enclosures" by RDH Building Science page 45-46

<sup>&</sup>lt;sup>20</sup> 2025 "Embodied Carbon Honeywell Enclosures" by RDH Building Science page 45-46

Table 9 Embodied Carbon Emissions (A1-A3 Life Stages) for 9m<sup>2</sup> for Brick Clad with Split Exterior Mineral Wool Insulation and Interior Closed Cell Spray Foam Insulation in Wood Stud. <sup>21</sup>

| Category               | Material                                              | Description from EPD                                                                                                                                                                                                         | Thickness | Other<br>Quantity <sup>1</sup> | Carbon<br>Emissions<br>(A1-A3) | % of total |
|------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------|--------------------------------|------------|
| Units                  |                                                       |                                                                                                                                                                                                                              | mm        |                                | kgCO <sub>2</sub> e            | %          |
| Finish                 | Gypsum Board                                          | Gypsum plaster board, regular, generic,<br>6.5-25 mm (0.25-0.98 in), 10.725 kg/m <sup>2</sup><br>(2.20 lbs/ft <sup>2</sup> ) (for 12.5 mm/0.49 in), 858<br>kg/m <sup>2</sup> (53.6 lbs/ft <sup>2</sup> ), 0% recycled gypsum | 12.7      |                                | 29                             | 3.0%       |
| Back-up<br>Structure   | 2"x6" Wood Stud                                       | Softwood lumber, kiln-dried and planed, 19<br>mm, 460 kg/m³, 15% moisture content                                                                                                                                            | 139.7     | 0.84 m <sup>2</sup>            | 7.4                            | 0.8%       |
| Interior<br>Insulation | 4" Closed Cell<br>Spray Foam                          | Spray polyurethane foam insulation closed<br>cell with HFO blowing agent, 1 m <sup>2</sup> K/W, 20<br>mm, 0.65 kg/m <sup>2</sup>                                                                                             | 92.1      |                                | 98                             | 10.0%      |
| Sheathing              | OSB                                                   | Oriented strand board (OSB), 11 mm, 3.58 kg/m <sup>2</sup> , 325 kg/m <sup>3</sup>                                                                                                                                           | 12.7      |                                | 35                             | 3.6%       |
| Exterior<br>Membrane   | Vapour Permeable<br>Air Barrier                       | Self-adhesive air/vapour barrier membrane,<br>tri-laminated polyethylene faced, 40 mil (1<br>mm), 0.2 lb/ft² (0.975 kg/m²)                                                                                                   | •         |                                | 20                             | 2.0%       |
| Exterior<br>Insulation | 4" Mineral Wool                                       | Mineral wool Insulation, high density, R = 1<br>m <sup>2</sup> K/W, 33.8 mm, 3.49 kg/m <sup>2</sup> , 103 kg/m <sup>3</sup>                                                                                                  | 101.6     |                                | 260                            | 26.6%      |
| Cladding<br>Anchorage  | Stainless Steel<br>Vertical Masonry<br>Ties (16"x16") | Cold-formed steel framing products, 7850 kg/m <sup>3</sup>                                                                                                                                                                   |           | 0.001 m <sup>3</sup>           | 18                             | 1.8%       |
| Cladding               | Brick                                                 | Clay brick, 2120 kg/m²; Mortar Type N                                                                                                                                                                                        | 90.0      |                                | 510                            | 52.29      |
|                        |                                                       |                                                                                                                                                                                                                              |           | TOTAL                          | 977.4                          | 100.09     |

<sup>\*</sup> Thickness determined by EPD default.

The brick is over 50% of the embodied carbon structure followed by mineral wool. The final table for the assembly Table 10 is a summary of the environmental emissions (A1 to C4 life stages) for 9m<sup>2</sup>.

Table10 Environmental Emissions (A1-A3 Life Stages) for 9m<sup>2</sup> for Existing Masonry with Interior HFO Spray Foam Insulation Assembly. <sup>22</sup>

| Lifecycle Stage                       |                      | A1to C4  | A1-A3                     | A4-A5*                                 | B1-B5                                      | C1-C4          | A1-A3<br>Contribution<br>to total |
|---------------------------------------|----------------------|----------|---------------------------|----------------------------------------|--------------------------------------------|----------------|-----------------------------------|
| Category                              | Units                | Total    | Construction<br>Materials | Transport to<br>Site &<br>Construction | Material<br>Replacement &<br>Refurbishment | Deconstruction | %                                 |
| Global Warming                        | kg CO <sub>2</sub> e | 1,744.9  | 974.6                     | 119.2                                  | 565.63                                     | 85.57          | 56%                               |
| Acidification                         | kg SO                | 15.7     | 8.4                       | 0.10                                   | 6.52                                       | 0.72           | 53%                               |
| Eutrophication                        | kg Ne                | 2.4      | 1.5                       | 0.014                                  | 0.76                                       | 0.07           | 65%                               |
| Ozone Depletion                       | kg CFC11e            | 0.00032  | 0.00025                   | 0.00000                                | 0.00006                                    | 0.00000        | 79%                               |
| Formation of<br>Tropospheric<br>Ozone | kg O₃e               | 92.0     | 57.6                      | 2.9                                    | 30.25                                      | 1.23           | 63%                               |
| Fossil Fuel Primary<br>Energy         | MJ                   | 22,260.0 | 12,215.7                  | 507.9                                  | 9,500.69                                   | 35.71          | 55%                               |
| Biogenic Carbon<br>Storage            | kg COze              | -167.6   | 167.6                     | 0.0                                    | 0.00                                       | 0.00           | -17%                              |

This analysis shows the impact of the biogenic carbon storage for wood used in the assembly. The impact of the categories are similar.

#### Conclusion

The construction industry is responsible for roughly 40% of the worldwide carbon emissions. As we have optimized energy usage in buildings (operational carbon), the efforts are now looking at embodied carbon. Embodied carbon is becoming a key consideration in decision making by the design community. This paper has looked at the embodied carbon in 3 assemblies. Two are retrofit assemblies. One utilizes mineral wool the other utilizes HFO spray foam. The embodied carbon is 71% lower for the spray foam assembly. The third assembly is one that is a new build which

<sup>&</sup>lt;sup>1</sup>Volume/mass/area only shown if calculated differently than 9 m<sup>2</sup> area and thickness.

<sup>&</sup>lt;sup>21</sup> 2025 "Embodied Carbon Honeywell Enclosures" by RDH Building Science page 46

<sup>&</sup>lt;sup>22</sup> 2025 "Embodied Carbon Honeywell Enclosures" by RDH Building Science page 45-46

used both mineral wool and HFO spray foam. This assembly highlights the significant increase in embodied carbon in a new build vs retrofit application and the importance that external cladding plays in embodied carbon.

Finally, the analysis of the assemblies presented in this paper point out that to minimize embodied carbon in an assembly one needs to not only consider individual components but also what is used in an assembly. From this analysis it is apparent the HFO blown spray foam has minimal impact to the embodied carbon of the assemblies tested.



Mary Bogdan is a Fellow for Honeywell. She earned a bachelor's degree in Chemistry/Biochemistry and an MBA from Canisius College. Since joining Honeywell in 1989, Mary has held numerous positions in research and development. She currently supports the fluorine products blowing agent business leading application research projects and providing technical service to the global spray foam industry. She is a Six Sigma Black belt. She has over 30 US patents and has numerous published technical articles on the development and use of fluorocarbons as foam

blowing agents. She is currently a member of the SPFA Board of Directors and in addition she has received industry recognition for leadership and excellence in presentation of technical papers. In 2022 she was presented with the CPI Distinguished Leadership Award. In 2023 she was named "Hero in Chemistry" by ACS for her work in development of HFO blowing agents.



**Rockford Boyer** is a Building Science Specialist with over 22 years of experience spanning architecture, civil engineering, and construction. As Building Science and Sustainability Manager at Elastochem, he provides consulting on hygrothermal analysis, energy modeling, and sustainable enclosure design, with a particular focus on spray foam insulation and low-carbon building materials. He also teaches Building Materials and Architectural Detailing at Sheridan College, where he brings real-world construction lessons into the classroom. Rockford holds a Master of Building Science, Bachelor of Architectural Science and a diploma in Civil Engineering. A frequent

contributor to Construction Canada and other industry publications, Rockford combines technical expertise with a practical contractor-driven perspective. His work emphasizes building resiliency, carbon reduction strategies, and bridging the gap between theory, design, and on-site execution.

This paper may contain copyrighted material, the use of which may not have been specifically authorized by the copyright holder. To the extent this paper contains any such copyrighted material, the material is being used for nonprofit educational purposes reflecting a permitted "fair use" thereof as authorized under Title 17 U.S.C. Section 107. If any copyrighted material included from this paper is further used for purposes that go beyond "fair use," the copyright holder's permission is required.